篇一:五年级数学日记
今天,我去学校报名回家后,包好书皮,就开始计算这学期我支出的费用。
首先是学费。学费410元,加上饮水费20元,共430元。接着是奥林匹克数学学校的收费180元,估计还要20元的乘车费用,共200元。还有练习本的钱:《课课通》2本21.5元;《英语练习》1本9.9元;2本《试卷课课通》15.9元;《江苏大试卷》3本21元。21.5+9.9+15.9+13+21=81.3(元)。
学习用费:430+200+81.3=711.3(元)。
生活用费:这学期大概要喝完5箱牛奶 ,5×30=150(元)。每顿饭大概要2~3元,算它2.5元,2.5×3×30×5=1125(元)。“还有什么呢?”我咬着铅笔自言自语道,“还有你的学习用品。”哎,妈妈回来了。没错,还有学习用品。
学习用品:一只笔袋8元,一只铅笔盒3元(很便宜,清仓货),六枝铅笔3元,一块橡皮0.5元,两把三角尺1元,两枝自动铅笔5元,8+3+0.5+1+5=20.5(元)。
总支出:711.3+150+1125+20.5=2006.8(元)。
哇,没想到,平时不太花钱的我,竟然会让父母花2006.8元钱在我这一学期上。看来,我可要节约用钱呀!
篇二:五年级数学日记
本学期我们学习了方程,我知道了方程是等式,但等式不一定是方程。通过学习,我知道了两边同时加上或减去同一个数,所得结果仍然是等式,这是等式的性质;两边同时乘或除以一个不等于0的数,所得结果仍然是等式,这也是等式的性质。
在解方程时,我学会了两种方法,一种是运用等式的性质,例如:10+ⅹ=15,可以把它想成是:10+ⅹ-10=15-10;一种是运用以前学过的加减乘除各部分之间的关系来思考,例如:10+ⅹ=15写成ⅹ=15-10,计算结果为ⅹ=5。
在生活中,我们可以运用方程来解决实际问题。有一次,我姑姑家在装修新房子,他们要购买一些灯泡,不同的房间购买的灯泡也不相同。姑父列了一张清单,40W的普通灯泡要16个,50W的冷反射定向照明卤钨灯泡要4个(装在客厅里),25W的普通灯泡要30个,节能11W的灯泡要6个(装在厨房间、卫生间),这些灯泡的功能不同,价格也相差很多。姑父让我和爷爷去买,给了爷爷400元钱。我们到了灯具市场,那里的灯泡品种繁多,各种品牌的价格也相差很多,真不知该买怎样的。爷爷对我说:“你来帮我出主意,怎么买?”我对爷爷说:“那必须合理分配。”我们先买普通灯泡,看中40W的普通灯泡和25W的普通灯泡价格相同,每个4元,这样就花去了46×4=184(元),节能11W的灯泡价格在12元一个,这样又化了12×6=72(元),这样,我们已经用去了184+72=256(元),剩下的就可以用在买最贵的冷反射定向照明卤钨灯了。这样计算,4X+256=400,那么4X=144,X=36。根据这样的推算,我们有了目标,找差不多价格的卤钨灯买,所带的钱就够了。
所学的数学知识用在实际生活中,还真管用。
篇三:数学日记
今天中午,我正在做数学暑假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。
最后,我得到了结果,为374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。